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KORIEYCLATURE 

c, normalized concentration; 
^ 
C, heat capacity, [J “C kg-‘] ; 
D, mass diffusivity, [m2 s- ‘I; 

k thermal conductivity, [J”Cm-’ 

L, length of slab, [m] ; 
R defined by equation (11); 

r, mass flux, DC’; 

s, defined by equation (12); 
s, location of the phase front: 

$9 time variable, [s] ; 

>. 
temperature, c”C] ; 
interface temperature, PC] ; 

u, heat flux, ku’; 
w, defined by equation (13); 

X, length variable, [m] ; 
z, defined by equation (14). 

Greek symbols 

a, boundary temperature, c”C] ; 
ct, boundary concentration; 

At, time step, [s] ; 
4 heat of fusion, [J kg-‘] ; 
P3 mass density, [kgm-3]. 

Subscripts 

+, indicates liquid phase ; 
-3 indicates solid phase ; 

s-1-j; 

0. indicates initial time; 
II- 1, indicates time level n - 1 

Superscripts 

didx 

1. IiXTRODbCI‘IOL 

IT IS the purpose of this communication to introduce a 
numerical method for the solidification of a one-dimensional 
binary alloy. The method is a straightforward extension of the 
technique described in [4] for the two-phase Stefan problem. 
It is applied to the heat and mass balance equations and 
specifically tracks the phase front. The method has several 
useful features : 

(1) It applies to the primary variables of temperature dnd 
solute concentration. 

(2) It permits solute diffusion both in the liquid and solid 
phase. 

(3) General phase diagrams are acceptable for the 
liquid-solid phase change. 

(4) The method is applicable to systems with heat and 
concentration dependent diffusion parameters. 

(5) The method is time implicit and can cope with 
discontinuous systems as well as with the vast11 
different time constants for the heat and mass dif- 
fusion. Last, but not least the method is straightfor- 
ward to implement and cheap to run. 
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FIG. 1. Phase diagram for a binary alloy. Liquidus : Parabola 
through (0, 12001, (0.7, 1100), (I, 1000); solidus: Parabola 

through (0, 1200), (0.3, llOO), (I, 1000). 

2. MODEL AND ALGORITHM 

We shall use the model recently discussed in [Z] for heat 
and mass transport in the liquid over the interval [O,s(t)] 
(indexed with the subscript +), in the solid over the interval 
[s(t), L] (indexed with -) and across the interface x = s(t) 

Heat transport 

Mass transport 

(2) 

Continuity of temperature on the interface 

l4+ = a_ = u* (3) 

where u* is an unknown function of time and space. 
Energy balance on the interface 

(4) 

Mass balance on the interface 

In contrast to the linear relationship employed in [2] we shall 
link the interface concentrations and temperature through a 
general phase relationship for a binary mixture 

c* = g&4*). 

A typical phase diagram is shown in Fig. 1. (We remark that 
for some eutectics the condition (6) must be replaced by its 
inverse relation a* = Br(ci); our method remains applicable 
in principle but its implementation will depend strongly on 
the form of the functions $* .) 

The boundary data are written as u+(O, t) = a+(t), u_(L, t) 
= a_(r),c+(O,t) = ~+(r)andc_(L,t) = /3_(t). Fluxdatacan 
be handled as well but would require a modification of the 
existing computer program. Initial data are assumed given as 
U+tx, 0) = u&), ci(x, 0) = co(x), s(O) = stt. The in- 
it~~/boundary data need not be contmuous. 

For the numerical solution these equations are time 
discretized and converted to first order systems. Assuming 
that we have the temperature u.-r, the con~ntration en-r 
and the interfaces,_ 1 at time t.- r we obtain the new solution 
at t, = t,_, -t At from 

1 
u; =--u+ 

ki - 

1 
c; = -ri: 

D* 

2.x; =F[u+ -u,-,(x)] r; =t;[c* - c,-,(x)] 

subject to u+(O) = a+(c,), u.-(L) = a-(L), c+(O) = P+(Lh 
c_(L) = fi_(tJ. The interface is determined from 

s-s”.., 
i.p------ - (7) 

4r 
o_(s) + c+(s) = 0 

[c+ - c_]‘-j:s -r_(s) + r+(s) = 0 63) 

where c* = g*(u*) and U* = u+(s) = U-(S). 
It is well known [4] that the temperature and con- 

centration are related to their fluxes through the Riccati 
transformations 

u*(x) = R,(x)rJ*(x) + w+(x) 

c*(x) = S,(xIr,(x) -I- Z*(X) 

where R, and S, are the solutions of 
^ 

(9) 

(10) 

subjecttoR+(O)=O,R_(L) =O,S+(O) =O,S_(L)=O,while 
w* and .z* satisfy the initial value problems 

w; =-... 
i ): 

$(X) (W’ - U”_,(X)) 

w+(O) = a,@,), w_(t) = a_(t,) (13) 

S(x) 2; =--- 
( ! 

At (r* -G-l(x)) 
* 

z+(O) = P+(rJ,r-(L) = B-&J. (14) 

The solutions of equations (1 lf-(14) may be assumed known 
over [O,L], sometimes analytically if the coefficients are 
constant, or numerically. The interface sn is then determined 
as follows. If the interface is at the arbitrary point x then it 
follows from (9) that the heat fluxes are given by 

u” -W*(X) 

a’ = R,(x) 

where II* is as yet undetermin~. Substitution into (7) shows 
that u* must satisfy 

[ 

x-s,_, w-(x) w+(x) 
u*(x)= i,p---+----- 

At R-6) R+(x) 11 

c 

1 1 
___-___ 
R-(x) R+(x) ! 

(15) 

The interface s is found if for x = s the equation (8) can be 
satisfied. Since 

r*(x) = 
c*(x) - r*(x) 

S*(x) 

and clt (x) = g*(ir*) this amounts to searching for a root of the 
equation 

G(x) = Is+@“, - ,.,u*, C+) 
G-k*) - z-(x) ---------------+ G+eJ*) -z+(x) 

S-(x) S+(x) 
= 0 (16) 

where u* is given by equation (15). 
Only those roots s,, of 4(x) = 0 are meaningful for which 

u*(s,,) lies in the phase change region indicated by the phase 
diagram. In our numerical work only one root was found in 
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FIG. 2. Concentration in the slab after 1Omin and after 3 h. 
Solid lines: computed concentrations. Broken lines: max- 
imum permissible concentrations for the computed tem- 
peratures 1400 space mesh points, 630 time steps increasmg 

from 2 s to 2 min : Cyber 74 execution time 5 min 

this range. Once .s, is known the temperature and con 
centration are obtained by integrating 

subject to the computed fluxes on the phase front s,, and by 
substituting these functions into equations (9) and (10) (see, 
again, 141). 

The numerical solution of these equations can proceed as 
follows. We assume the solution is given at t, , 4 grid is 
defined on the interval [O,L] and a time step Ar is chosen. 
Then R, and SL are found at each grid point. If the physical 
parameters are constant then RI and S, are available in 
closed form because the equation 

I” = 11 - hY2, Y1.L’) = 0 

has the solution 

I’(\.) = v(u&) tanh ,:(abt( Y - .Yl 

Note that Ri and Sk need not be recalculated at each time 
step unless At is changed. Next 14:. and I- are integrated 
numerically from Y = L to G < s(t,_ 1 ) where .t is chosen so 
small that the new interface can be expected to lie to the right 
ofi.Then w+ and;, areintegratedfrom.~ = 0 to*_ where i IS 
chosen so targe that s, is expected to lie to the left of ?. On tbc 
interval (G, 2) the equation #J(X) = 0 is solved for 5,. Fmally, 
the equations (17) and (18) are integrated and the results 
substituted into (9) and (10). 

The current computer code IS based on a fixed but not 
necessarily uniform grid and on closed form solutions for R + 
and S,. The equations (13) and (17) are integrated with the 
trapezoidal ruie; however, the equations (14) and (18) are 
extremely stiff (I/At S_(X) - lo”) so that an implicit Euler 
method appears more advantageous than the higher order 
trapezoidal rule. The root of 4(.x) = 0 is determined by 
finding two adjacent mesh points xi_ ], si between which 4 
changes sign, and by obtaining s, as the zero of the quadratic 
interpolant to .$ at x,_ *, xi_ 1 and s,. 

I%,. 3. Plot of the interface poartron. 

The applicability of the method is show-n by computtng the 
solidification process for a typical metal alloy. The physical 
constants are k ~ = 10, k. = 20. <:. -- 400. (’ T_ ml. (8 _ 
=g -6x lW’.i=25O,D+ .= II) “.D - 10 !‘.Irmaybr 
noted that the thermal and mass difhrsivities differ by fire to 
seven orders of magnitude. The phase i\ shown in Fig ! 
Initial conditions are U&Y) = 1100, co(r) = 0.7 m the fiymd. 
c;,(x) = 0.3 in the solid, sg = 0,075, L= 0.1. The boundary 
conditions are l+(t) = llOO,;(_(r) = loO0, if, I!) = 0.7 1 irt 

= 0.3, t :> 0. The temperature is discontinuous at I = 0 at the 
solid end while the initial interface concentration is com- 
patible with the phase diagram. 

Figures 2, 3 and 4 show some computed resuits for a 10 cm 
slab. The space mesh is 0.02 cm for the first 4 cm and 0.W cm 
for the remaining 6 cm. Time steps are hi := 2 s for i E (0. hOO 1; 

FIG. 4. Plot of the interface concentrations as a l’unctuni ioi 
tlmc. 
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At = 5s for to(600,12~], At = 10s for t~(1200,1800], AC 
= 30s for t~(1800,3600], At = 60s for t ~(3600,7200] and 
At = 120 s for t E (7200,lO 8001. A fine grid appears desirable, 
at least near the interface, because of extremely steep 
concentration gradients as shown in Fig. 2. The solid lines in 
this illustration indicate the computed concentrations of one 
constituent in the liquid and solid after 1Omin and 3 h. There 
is a sharp increase in the concentration of both phases near 
the interface+ and little diffusion takes place out of the newly 
solidified metal into the rest of the solid. The temperature 
profile throughout the slab is already in its final steady-state 
at t = 10 min and is not shown. As in [3] we also indicate the 
maximum permissible concentrations corresponding to the 
computed temperature profiles. They are the liquid and solid 
concentrations obtained for the given temperature from the 
phase diagram. Since the permitted liquid concentration lies 
above the actual concentration the liquid is constitutionally 
supercooled. Similarly, the solid is superheated near the 
interface after 3 h. Figure 3 shows the phase front and Fig. 4 
gives the interface concentrations as a function of time. The 
interface temperature (not shown) decreases for about 8 min 
and then begins to climb again. These results are qualitatively 
correct (see, e.g. [l], p. 150). Quantitatively, they are very 
stable with respect to changes in the space mesh but show 
some change with At, for example, $600) = 0.0716 for At 
= 30 s, ~(600) = 0.0687 for At = 5 s, $600) = 0.0677 for At 
= 3 s, $600) = 0.06705 for Ar = 2 s. This behavior indicates 
that a production computer code for the above problem 
should be based on a second order time di~retization. On 
the other hand, because the slab is thin, the temperature 

change is rapid and the supercooling is substantial this 
application appears to be very severe. Yet the method even in 
its relatively simple implementation can effectively and 
quickly solve this one-dimensional solidification problem. 
Finally, the method is readily applicable to much more 
complicated one-dimensional problems. Whether it can be 
used in conjunction with locally one-dimensional methods 
for multi-dimensional problems remains to be examined. 
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